•Types• •Cardiovascular• •Vascular• •The Heart• •Blood•
 
 

The Heart

The heart is a muscular structure that contracts in a rhythmic pattern to pump blood. Hearts have a variety of forms: chambered hearts in mollusks and vertebrates, tubular hearts of arthropods, and aortic arches of annelids. Accessory hearts are used by insects to boost or supplement the main heart's actions. Fish, reptiles, and amphibians have lymph hearts that help pump lymph back into veins.

The basic vertebrate heart, such as occurs in fish, has two chambers. An auricle is the chamber of the heart where blood is received from the body. A ventricle pumps the blood it gets through a valve from the auricle out to the gills through an artery.

Amphibians have a three-chambered heart: two atria emptying into a single common ventricle. Some species have a partial separation of the ventricle to reduce the mixing of oxygenated (coming back from the lungs) and deoxygenated blood (coming in from the body). Two sided or two chambered hearts permit pumping at higher pressures and the addition of the pulmonary loop permits blood to go to the lungs at lower pressure yet still go to the systemic loop at higher pressures.

Establishment of the four-chambered heart, along with the pulmonary and systemic circuits, completely separates oxygenated from deoxygenated blood. This allows higher the metabolic rates needed by warm-blooded birds and mammals.

The human heart is a two-sided, 4 chambered structure with muscular walls. An atrioventricular (AV) valve separates each auricle from ventricle. A semilunar (also known as arterial) valve separates each ventricle from its connecting artery.

The heart beats or contracts 70 times per minute. The human heart will undergo over 3 billion contraction cycles during a normal lifetime. The cardiac cycle consists of two parts: systole (contraction of the heart muscle) and diastole (relaxation of the heart muscle). Atria contract while ventricles relax. The pulse is a wave of contraction transmitted along the arteries. Valves in the heart open and close during the cardiac cycle. Heart muscle contraction is due to the presence of nodal tissue in two regions of the heart. The SA node (sinoatrial node) initiates heartbeat. The AV node (atrioventricular node) causes ventricles to contract. The AV node is sometimes called the pacemaker since it keeps heartbeat regular. Heartbeat is also controlled by the autonomic nervous system.

Blood flows through the heart from veins to atria to ventricles out by arteries. Heart valves limit flow to a single direction. One heartbeat, or cardiac cycle, includes atrial contraction and relaxation, ventricular contraction and relaxation, and a short pause. Normal cardiac cycles (at rest) take 0.8 seconds. Blood from the body flows into the vena cava, which empties into the right atrium. At the same time, oxygenated blood from the lungs flows from the pulmonary vein into the left atrium. The muscles of both atria contract, forcing blood downward through each AV valve into each ventricle.

Diastole is the filling of the ventricles with blood. Ventricular systole opens the SL valves, forcing blood out of the ventricles through the pulmonary artery or aorta. The sound of the heart contracting and the valves opening and closing produces a characteristic "lub-dub" sound. Lub is associated with closure of the AV valves, dub is the closing of the SL valves.

Human heartbeats originate from the sinoatrial node (SA node) near the right atrium. Modified muscle cells contract, sending a signal to other muscle cells in the heart to contract. The signal spreads to the atrioventricular node (AV node). Signals carried from the AV node, slightly delayed, through bundle of His fibers and Purkinjie fibers cause the ventricles to contract simultaneously.

An electrocardiogram (ECG) measures changes in electrical potential across the heart, and can detect the contraction pulses that pass over the surface of the heart. There are three slow, negative changes, known as P, R, and T. Positive deflections are the Q and S waves. The P wave represents the contraction impulse of the atria, the T wave the ventricular contraction. ECGs are useful in diagnosing heart abnormalities.

Diseases of the Heart and Cardiovascular System

Cardiac muscle cells are serviced by a system of coronary arteries. During exercise the flow through these arteries is up to five times normal flow. Blocked flow in coronary arteries can result in death of heart muscle, leading to a heart attack.

Blockage of coronary arteries is usually the result of gradual buildup of lipids and cholesterol in the inner wall of the coronary artery. Occasional chest pain, angina pectoralis, can result during periods of stress or physical exertion. Angina indicates oxygen demands are greater than capacity to deliver it and that a heart attack may occur in the future. Heart muscle cells that die are not replaced: heart muscle cells do not divide. Heart disease and coronary artery disease are the leading causes of death in the US.

Hypertension, high blood pressure (the silent killer), occurs when blood pressure is consistently above 140/90. Causes in most cases are unknown, although stress, obesity, high salt intake, and smoking can add to a genetic predisposition.

Two main routes for circulation are the pulmonary (to and from the lungs) and the systemic (to and from the body). Pulmonary arteries carry blood from the heart to the lungs. In the lungs gas exchange occurs. Pulmonary veins carry blood from lungs to heart. The aorta is the main artery of systemic circuit. The vena cavae are the main veins of the systemic circuit. Coronary arteries deliver oxygenated blood, food, etc. to the heart. Animals often have a portal system, which begins and ends in capillaries, such as between the digestive tract and the liver.

Fish pump blood from the heart to their gills, where gas exchange occurs, and then on to the rest of the body. Mammals pump blood to the lungs for gas exchange, then back to the heart for pumping out to the systemic circulation. Blood flow is only one directional.

 
 
Anatomy of the human heart